In a recent study published in Scientific Reports, researchers developed a computational workflow based on molecular dynamic (MD) simulations and artificial neural network (ANN) to assess the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein receptor-binding domain (RBD)-human angiotensin-converting enzyme 2 (hACE2) binding affinities of SARS-CoV-2 variants. Background Studies have reported that S-hACE2 binding interactions facilitate SARS-CoV-2 entry and subsequent replication in the host. Thus, coronavirus disease 2019 (COVID-19) may be prevented by S-ACE2 binding inhibition. Accordingly, human soluble ACE2 (hsACE2) that binds to SARS-CoV-2 virions before SARS-CoV-2 entry may prevent COVID-19; however, the approach requires optimization and...